I M.Tech - I Semester – Regular Examinations - MARCH - 2023

MECHANICS OF COMPOSITE MATERIALS (MACHINE DESIGN)

Duration: 3 hours	Max. Marks: 60				
Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit					
carries 15 marks and have an internal choice of Questions.					
2. All parts of Question must be answered in one place.					
BL – Blooms Level	CO – Course Outcome				

			BL	СО	Max. Marks			
UNIT-I								
1	a)	Classify composites in detail.	L2	CO1	10 M			
	b)	With a neat sketch explain autoclave	L2	CO1	5 M			
		molding.						
OR								
2	a)	Compare and contrast thermoset and	L2	CO1	8 M			
		thermoplastic polymers						
	b)	Discuss about ceramic matrix composites	L2	CO1	7 M			
UNIT-II								
3	a)	Explain the strength of composite for	L3	CO2	8 M			
		transverse compression and in plane shear.						
	b)	Analyse the maximum stress theory in	L3	CO2	7 M			
		detail.						

Page 1 of 2

		OR			
4	a)	Discuss the transformations of stress strain	L3	CO2	8 M
		relations in terms of engineering constants.			
	b)	Explain maximum strain theory for	L3	CO2	7 M
		unidirectional lamina.			
		UNIT-III			
5	Der	rive stress strain relations for a lamina within	L3	CO3	15 M
	the	laminate.			
OR					
6	a)	Explain about a laminate and different	L3	CO3	7 M
		special cases of laminate.			
	b)	Compare various aspects of micro	L3	CO3	8 M
		mechanics and macromechanics.			
	·	UNIT-IV			
7	a)	Discuss the possible failure modes in a	L2	CO4	8 M
		composite.			
	b)	Discuss the phenomenon of inter laminar	L2	CO4	7 M
		stresses.			
	<u> </u>	OR		· · · · · · · · · · · · · · · · · · ·	
8	-	plain the terms micro buckling and tensile	L2	CO4	15 M
	fibr	e failure.			
	1			1	